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ABSTRACT

Range, Bearing, Course, Doppler and speed of a moving target are parameters that define a target motion. The present
work concerns the estimation of Target Motion parameters (TMP) in a noisy environment from data obtained through
sensor. The sensor gives the Frequency and Bearing measurements of the target.

Doppler Bearing passive target tracking is the determination of the trajectory of a target solely from measurements (both
bearing and Doppler) of signals originating from the target. In the underwater scenario, the passive SONAR, which utilizes
a number of hydrophones, is capable of sensing the sound waves in water. These sensors get the frequency and bearing
information of the underwater target or the surface target as noise corrupted data (acoustic disturbances generated by
underwater bodies).

The objective of this paper is to predict the current target position in terms of Range, Bearing, Course, Speed and
frequency. This prediction is done by analyzing the data obtained from first contact instance with the target. PASSIVE

SONAR sensors are used to obtain the data.
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| INTRODUCTION

TMA provides a means to track targets using
bearing data received from passive sonar (Streit and
Walsh) [1]. This is primarily used in naval vessels
where tracking of vessels around ownship is essential
in deciding an appropriate course of action. In the naval
terms used in TMA, ownship refers to the current
observation platform for the bearings. A bearing is
essentially an indication of direction. Target or source
refers to a single vessel being tracked by ownship. The
problem space is the set of all possible location
scenarios and movement of the target confirmed by the
bearings. Therefore a solution is considered to be a
single resolution to the location and movement of a
target based in the problem space.

Passive sonar, the main source of data for TMA,
utilises an array of hydrophones and a technique
known as beamforming to infer bearings corresponding
to a tracked target. Beamforming works on the
assumption that every naval vessel radiates a factor of
noise from the engines and other heavy mechanical
processes, to which the hydrophones of ownship listen.
The passive sonar process takes this radiated noise
signal, caliberates for any ambient noise from the
ocean and ownship self-noise, and approximates a

bearing based on signal strength received by the
individual hydrophones. This received signal has a low
signal-to-noise ratio due to the background ocean
noise, ownship noise, and ambient reflections
(Waite)[2], and in turn the bearings have a relative
uncertainty factor associated with them.

The Target motion analysis (TMA) using
conventional passive bearing together with frequency
measurements is explored in S.Koteswararao study.
This approach offers one tactical advantage over the
classical bearings-only TMA. It makes the ownship
maneuver superfluous. The inclusion of range, course,
and speed parameterization is proposed in the UKF
target state vector to obtain the convergence of the
solution fast [3].

An ownship monitors noisy sonar bearings from
a radiating target, which is assumed to be travelling
with a uniform velocity. The ownship processes these
measurements and finds out target motion parameters.
Here the measurement is nonlinear, making the whole
process nonlinear. Since bearing measurements are
extracted from a single sensor, the process remains
unobservable until ownship executes a proper
maneuver. However, there are other methods found in
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literature [4-9] to obtain target motion parameters in the
above situation.

The noise in the measurements is assumed to
be zero mean Gaussian and the noise in the frequency
measurement is not correlated with that of bearing
measurement. It is also assumed that the
measurements are continuously available every second.
Here the sum of the tonals is taken as a state variable
in the state vector. The concept of Chan and Rudnick’s
constant state vector formulation [10] that the
dimension of state vector does not increase with the
number of frequency tonals is followed.

Richard [11] examines the problem of adaptively
tracking, in the horizontal ocean plane, an underwater
maneuvering target using passive, time delay
measurements. The target is free to make large scale
random changes in velocity and bearing at times that
are unknown to the observer. Tracking is accomplished
by utilizing the basic linearized polar or “spherical”
model of target and observer motion previously
developed for radar tracking of airborne maneuvering
vehicles. The addition of a nonlinear system block to
the tracking system leads to a partial decoupling of
both bearing and polar range estimators which not only
reduces computational burden, but also significantly
reduces any tendency toward tracking divergence. A
modified method to obtain closed-form expressions for
the measurement error statistics is presented which
replaces conventional extensive off-line simulation
procedures. Finally, test results are shown which
validate the elimination of all extended Kalman filters
in the measurement processing. This makes the
passive tracking system very “robust” with respect to
convergence characteristics in the presence of adverse
target maneuvers.

I KALMAN FILTERING

Ever since the manual tracing of “blips” on radar
and sonar systems evolved into computer controlled
tracking algorithms, tracking of any kind of sensor data
has continued to develop significantly. Tracking is the
processing of measurements obtained from a target in
order to maintain an estimate of its current state [25].

The Kalman filter algorithm has proven to be
quite successful in filtering sonar data [13]. The Kalman
filter is an estimation algorithm that takes the current
state, the control input, noisy observations and
produces the optimal linear estimate of its current state

along with the associated error variance. Kalman
Filtering attracted considerable attention because of its
general validity, mathematical elegance and widespread
technical application [14]. Another striking feature of the
Kalman Filter is the number of different ways the
solution equations can be derived. The maximum
likelihood method, the method of minimum variance
and the least-squares method are derivation methods
that were discovered following the initial system of
differential equations derived by Bucy and Kalman [15].

A. Underwater scenario

In the ocean environment, two dimensional
Doppler-Bearing tracking target motion analyses are
generally used. An own ship monitors noisy sonar
bearings and frequency from a radiating target and
finds out target motion parameters (TMP).

When the source emits harmonic components,
the harmonic signals will experience Doppler shifts at
the own ship so that the frequency measurements can
be explored to improve the estimation accuracy. The
use of both Doppler shifts and bearing angles to
analyze a moving target is termed Doppler-Bearing
Tracking (DBT).

As the true bearings and Doppler are not
available in real environment, it was replaced by the
measured bearing and Doppler (Measurement signal
= Actual signal + noise) by the simulator. The problem
is inherently nonlinear as the measurement is
nonlinear. In this passive target tracking, a single own
ship monitors a sequence of Bearing-Doppler
measurements, which are assumed to be available at
equi-spaced discrete times. The target motion analysis
can be viewed as target localization and its tracking.

The basic assumptions are that the target moves
at constant velocity most of the time. The ownship
motion is unrestricted (either maneuvering or
non-maneuvering). But as Doppler-Bearing tracking is
preferred, target motion parameters can also be
obtained for own ship non-maneuvering (straight line
path).

B. Tracking: Own ship and target motion

Passive target tracking is the determination of the
trajectory of a target solely from measurements of
signals originating from the target. These signals could
be machine noise from a target and its detection is
usually indicated by an increase in energy above the
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ambient at a certain bearing. The energy is mostly
broadband but in some instances, the signal spectrum
may contain a few tonal as well. In Doppler-Bearing
passive target tracking, a single own ship monitors a
sequence of both bearing and frequency
measurements, which are assumed to be available at
equi-spaced discrete times.

C. Ownship motion: Initial own ship position

Initial own ship position is assumed to be at the
origin. For ty = 1 sec, and shown in Figure-1.
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Fig. 1. Initial target position

From input bearing, initial position of target is
known as follows. For t; = 1 sec

Xt = range * sin (bearing)

yi = range * cos (bearing)

Where (x;, yy) is target position with respect to
own ship as the origin.

D. Tracking algorithms: least squares, kalman,
EKF, PMGDBEKF

From Karl Gauss the basic idea of least square
estimation is that: “the most probable value of the
unknown quantities will be that in which the sum of the
squares of differences between the actually observed
and the computed values multiplied by numbers that
measure the degree of precision is a minimum”.

The measurements are not always linear, some
may be noisier or some less noisy than others. It
implies that we have less confidence in some
measurements than in others. With this weighted least
square estimation came into existence. If the number
of measurements becomes too large, the computational
effort becomes prohibitive. Therefore recursive model

of weighted least square estimation is utilized which
reduces computational effort. If the correction term is
zero or if the gain matrix is zero, then the estimate
does not change from time step (k-1) to k.

A linear recursive estimator can be written in the
form:

Yk = HkX + Vk
Xg = Xiq + K (VirHiXg1)

Where  (yx-HyXk.1) is the correction term.
K is the estimator gain matrix.
Xk-1 is the previous estimate.

Yk is the new measurement.

Kalman filter is an efficient recursive filter that
estimates the state of a dynamic system from a series
of noisy measurements.

The error between the true state Xy and the
estimated state X is denoted as Xk~:

Xk~ = X, + Xk

Since the state is partly determined by the
stochastic process, Xk is a random variable. Since the
state estimate is determined by the measurement
sequence { yk}, which in turn is partly determined by
the stochastic process { vk}, Xk is a random variable.
Therefore, Xk~ is also a random Every time, get the
measurement and update the mean and covariance of
the state.  variable. Kalman filter operates by
propagating the mean and covariance of the state
through time.

But in real time applications as the
measurements obatained are not linear, Extended
Kalman Filter (EKF) is the widely used state estimation
algorithm to linearize the nonlinear systems around
kalman filter estimate (since the kalman filter estimates
the state of the system, we can use the kalman filter
estimate as the normal state trajectory). To overcome
the difficulties and to enhance the convergence rate
Modified Gain Doppler Bearing Extension Kalman Filter
(MGDBEKF) is used.
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E. Doppler bearing tracking (DBT) using MGDBEKF
fo compute target motion analysis

e [n the ocean environment, two-dimensional
target motion analysis (TMA) is generally
used.

e Passive sonar, which makes use of acoustic
signals for reception of signals, is considered
and used for tracking enemy targets.

e When passive sonar is to be simulated,
bearings and frequency measurements are
generated.

e The passive sonar positioned on a ship
observes noisy bearing and frequency
measurements of a target that may either be
a ship or a submarine. The observer is
assumed to be moving in straight line and
the target is assumed to be moving mostly
in straight line.

e The observer processes the measurements
and estimates the target motion parameters.
Typical Target- observer encounter is shown

in Figure-2.
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Fig. 2. Typical Target- observer encounter

Doppler-Bearing Tracking (DBT): The use of both
Doppler shifts and Bearing angles to analyze a moving
target is termed as Doppler-Bearing Tracking. The
noise in these measurements is assumed to be Zero
mean Gaussian and the noise in the frequency
measurements is not correlated with that of bearing
measurement. It is also assumed that the
measurements are continuously available every second.

Bearings Only Tracking (BOT): It is the determination
of ftrajectory of a target solely from bearing
measurements. If bearing measurements are only
extracted from single passive sonar, the process
remains unobservable until own ship executes proper
maneuver.

The noise in the bearing and frequency is
assumed to be additive in nature and follows normal
distribution. Random numbers are generated by using
“randn” function present in Matlab. The noise in the
bearing is assumed to be additive in nature and follows
normal distribution. Using PI generator random number
is generated. Using Central Limit Theorem, pseudo
random numbers are used to derive the data in normal
distribution. The input to the noise is in terms of
standard deviation. If input value is 0.5 standard
deviation, then maximum gaussian number will be three
times the given standard deviation number.

Noise in the bearing measurement is generated
with sigma_b as SD and it is added to the actual
bearing, to get measured bearing. Similarly the noise
in the frequency measurement is generated with
sigma_d as SD and it is added to the actual frequency,
to get measured frequency.

Input to simulator:

Target parameters (R, C, B, and S) and own ship
parameters (C, S) are read and taken as input by the
simulator. Assumed error in bearing measurement
(sigma_b) and error on the frequency measurement
(sigma_d) is fed as input.

Output to simulator:
Measured bearing = True bearing + noise
Where, true bearing = tan'1((xt - Xo) / (Vi = Yo))
Measured Doppler = True Doppler + noise
Where, true doppler = relative velocity/lambda,
Relative velocity, =sin B- (X;) +cos B- (Y)),
X,= Change in relative velocity in X-direction

Y,= Change in relative velocity in Y-direction

Il RESULTS

With and without maneuver, target versus
ownship plots are shown in Figure-3 & 4. To investigate
the performance of the MGDBEKF trackers for single
target applications, a Monte Carlo simulation is
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undertaken. In the scenario, a hull-mounted sonar is
fitted on a ship (the own ship), which emits Linear
Frequency Modulated (LFM) pings. This scenario
consists of Initial Velocity of the Target = 15.00 mts,
Initial Velocity of the Own ship = 10.00 mts, Initial

Target Course

60.00 degrees, Initial Observer

Course = 90.00 degrees, Initial Range = 1800 meters,
Initial Bearing = 10.00 degrees, Initial Position of the
observer = (0.0, 0.0), Sigma in bearing = 0.17 deg,
Sigma in frequency = 0.33 Hz, Target Frequency =
800.00 Hz.

A tool has been developed in Matlab, which

automates the entire tracking process using the
MGDBEKF algorithms described both actual and

Error in Course Estimate
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Fig. 6. Range, Bearing, Course and Speed error plots
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predicted results shown in Figure-5 and Range,
Bearing, Course and Speed error plots are shown in
Figure-6. In all these plots the own ship trajectory is
shown in BLUE and the true target trajectories are in
RED.

IV. CONCLUSION

The Paper deals with the Simulation of the
motion of the target and determining the initial target
parameters namely Frequency and Bearing. In basic
simulator ownship with and without maneuvering was
observed. These parameters were then corrupted with
noise to get the noisy measurements. DBT is a right
method to obtain target motion parameters without
using ownship maneuver. This method can be easily
adopted for underwater passive target tracking
application. In this paper, an approach using a Modified
Gain Extended Kalman Filter (which is useful for
nonlinear applications) is proposed to estimate target
motion parameters without using ownship maneuver in
passive target tracking. Monte-carlo simulation was
carried out in the scenarios.
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